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The l inear theory of the stabili ty of the spher ica l  shape of a cavity and the stability of its r a -  
dial osci l lat ions in a sound field are  discussed.  An equation is derived for the amplitudes of 
the spher ical  harmonics  with allowance for surface tension, viscosi ty,  and compress ib i l i ty  
of the surrounding liquid inthe H e r r i n g - F l y n n  approximation. The radial  pulsation stability 
is analyzed in the same  approximation.  The equations derived in the art icle  are  subjected 
to numerica l  analysis .  

The behavior of a cavity in a sound field has been studied in [1-8]. The equation derived f rom the 
hydrodynamical  equations for the descr ipt ion of the time variation of the radius R of a spherical  cavity has 
been investigated pr imar i ly  by numer ica l  methods [4-7]. The stability of the behavior of a spher ical  cavity 
in a sound field poses an interest ing problem. The stability of the spherical  shape of a vapor bubble has 
been investigated in the Nol t ingk-Neppi ras  approximation [9, 10]. The stability of the radial  pulsations of 
a gas-f i l led cavitation bubble has been investigated [11] without regard  for the surface tension, viscosity,  
and compress ib i l i ty  of the liquid. We now c a r r y  out a numerical  analysis of the stability of a spherical  
cavity in a sound field. 

We consider  the stability of the spher ical  shape of a cavity. Following Plesse t  [9], we represen t  the 
per turbed radius r s of the sphere  in the form 

r~ = n (t) + a,., (t) s .  

where R(t) is the unperturbed radius of the spher ical  bubble, Sn is the n-th spherical  harmonic,  and an(t ) 
is the amplitude of the n-th harmonic .  We assume that lan(t)l << R(t). 

The derivat ion of the equations descr ibing the variat ion of the spherical  harmonic  amplitudes is s imi-  
Ia r  to that in [9]. Using the express ion  for  the velocity potential with regard  for the surface tension and 
viscosi ty of a compress ib le  liquid [8] in sat isfact ion of the acoust ic-approximat ion wave equation, we can 
show that the representa t ion of the per turbed potential by analogy with [9] up to t e rms  of o rde r  ! /c  0 (e 0 is 
the unperturbed speed of sound in the liquid) is valid. Assuming that the cavity is filled with a gas that 
obeys the adiabatic equation of state,  we obtain the following equation for the unperturbed radius R(t): 

dell  Pl 9 d R ~  2 !dl? ' ~,f[ :,1 i dH' ~ 1~ d l  ) I I : ) ( l -  1 'JR", 
t;' i7~-. "1 - ' -~- [ P . ~ - - P ( R ) I  . . . .  0 ( 1 )  . . . .  c,, dl ] -I- ~ ' , - ~ ,  : ', 7,,, 3~,, a t , i  r,,,., at , co dt ] 

2~\ (11,,'~ :~v 23 4~t dR 

P= = P0 -- I'.~ sin (ot) 

Here P(R) is the p re s su re  on the surface  of the bubble, P~o is the p re s su re  at infinity, P0 is the p re s su re  in 
the unperturbed liquid, Pm and a) are  the amplitude and frequency of the external  sound field, T and p are 
the coefficients of surface tension and vicosity,  y is the adiabatic exponent, R 0 is the initial radius of the 
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c a v i t y ,  and P0 and Pl a r e  the  d e n s i t i e s  of  the  l iqu id  and the ga s .  F o r  the s p h e r i c a l  h a r m o n i c  a m p l i t u d e s  we 
have 

d2ftT~ .I- ] dr 
,/l~ ' -r ~ - -  A a , ,  : :  0 ( 2 )  

?, d l t  -I- i ) ( t l  ~- ]'l'z-!- B 

dr'-' cr ,11 dl~ I t  .... \ dl  ] 3 -  k L 

(3) 
_ t~ _1 1 ) (n  ' 2)~'L d-'lr i_(,, I)dV(n) /t ,;'-I'(1r I , l /~ , l / ' (a )  I ~ z n ( n - - i ) ( n - i  I )(n-. i -2) I F -  

,.?,, dl ,,,:pt, al l :  +u:i,o ~ ~ 1 ' + - ~  / 

i [ t n ( , , - I ) ( n . - i  1) (t it 2p.,,(,,- 1 1)(,, :-a) d l ' ( I t )  I I t  Jl .p.- i - - (n 1)!,~1 t 
- -  H" d l  It,:.-':,. d t  "J "'- 

F o r  pt<< P0 e x p r e s s i o n  (1) e o i n c i d e s  with the  I i e r r i n g - F l y n n  equa t ion ,  and fo r  # = 0 and e 0 ~ oo the e x -  
p r e s s i o n s  fo r  A and 13 a s s u m e  the  fo rm g iven  in [9]. 

We now ,analyze the s t a b i l i t y  of  the  s p h e r i c a l  shape  of  the  cav i t y  by n u m e r i c a l  i n t e g r a t i o n  of  Eq. (2) 
for  the  p e r t u r b a t i o n  h a r m o n i c  a m p l i t u d e s  and of  Eq. (1) for  the  u n p e r t u r b e d  r a d i u s  R(t) .  T h e s e  equa t ions  
a r e  i n t e g r a t e d  n u m e r i c a l l y  by the Runge - K u t t a  method  with  the  i n t e g r a t i o n  s t e p  chosen  a u t o m a t i c a l l y  to 
c o m p l y  with the  p r e s c r i b e d  c o m p u t a t i o n a l  a c c u r a c y .  The  t i m e - v a r i a b l e  s t e p  e n s u r e d  a r e l a t i v e  e r r o r  of  
10 ,  '~. The  c o r r e c t n e s s  o f  the f ina l  r e s u l t s  in the c a s e  of  an i n c o m p r e s s i b l e  l iqu id ,  a c o n s t a n t  e x t e r n a l  f i e ld ,  
and a v a p o r  bubble  without  r e g a r d  fo r  the  v i s c o s i t y  is  testc~t by c o m p a r i s o n  of  the n u m e r i c a l  i n t e g r a t i o n  
d a t a  with the  a n a l y t i c  s o l u t i o n s  g iven  in [10]. We c o n s i d e r  bubb le s  with R 0 = 10 -4 era ,  f i l l ed  with a gas  tha t  
o b e y s  an a d i a b a t i c  l a w  with a d i a b a t i c  exponent  ~ = 1.4. The  r e s o n a n c e  f r e q u e n c y  of the  cav i t y  is  c a l c u l a t e d  
a c c o r d i n g  to the  e x p r e s s i o n  [12, 13] 

mo -: It, ,- '  {3~,, I1% -[ (I - -  I i3~) 2~lltol/f)o --  (2t~/poBoY }'/' (4) 

The  c o m p r e s s i b i l i t y  t e r m s  have  been  o m i t t e d  in (4), b e c a u s e  t h e i r  c o n t r i b u t i o n  i s  ne g l i g ib l e  in the  
H e r r i n g - F l y n n  a p p r o x i m a t i o n  [14]. 

The  fo l lowing  e a s e s  a r e  a n a l y z e d :  ~v -- w 0 ( r e s o n a n c e ) ,  w = l(kv0, and uo = 0.1co 0. The  p r e s s u r e  P0 is  
c o n s i d e r e d  to be 1 a tm .  The a m p l i t u d e s  P m  of  the  e x t e r n a l  sound f ie ld  a r e  c h o s e n  to d e f e r  the c o l l a p s e  of  
the  cav i ty  a s  long as  p o s s i b l e .  The  l iquid  d e n s i t y  P0 is m a d e  equa l  to 1 g / e r a  :~, and the d e n s i t y  [h of  the  gas  
in the  bubble  i s  c a l c u l a t e d  by m e a n s  of  the C l a u s i u s - C l a p e y r o n  equa t ion  a t  an i n i t i a l  t e m p e r a t u r e  of  300~ 

The f i r s t - d e r i v a t i v e  t e r m  can  be e l i m i n a t e d  f rom Eq. (2) for  the  s p h e r i c a l  h a r m o n i c  a m p l i t u d e s .  The  
subs t i t u t i on  

u ~: a,, exp (Uo~'B dt) 
(n) 

r e d u c e s  Eq. (2) to the  fo rm 

d:u/dt" I -  1 (t) u == O, I (t) --=- - - A  - -  B / 4  ~ J/2 d B / d t  (6) 

w h e r e  A and B a r e  e v a l u a t e d  f rom (3). R e p r e s e n t i n g  ](t) by a F o u r i e r  c o s i n e  s e r i e s  

,'v 

I ( I )  ~ .  l~c()s(2~/. ' t  ]'l') (7) 
i, I1 

we ob ta in  the l I i l l  equa t ion  f r o m  (6). The  s t a b i l i t y  of  the s o l u t i o n s  of  Eq. (6) for  0 _  < t -< T can  be d e t e r m i n e d  
( see  [15]) f r o m  the v a l u e s  of  the  c o e f f i c i e n t s  b k in the e x p a n s i o n  (7). The  va lue s  of  b k a r e  c a l c u l a t e d  in 
each  of  the c a s e s  t r e a t e d  be low and p r o v i d e  an a dd i t i ona l  too l  fo r  o u r  s t a b i l i t y  a n a l y s i s .  

Wc now give  the r e s u l t s  of  the n u m e r i c a l  a n a l y s i s  of  the  s t a b i l i t y  of  the s p h e r i c a l  shape  of  a c av i t y  
in the I i e r r i n g - F l y n n a p p r o x i m a t i o n .  F i g u r e  1 i l l u s t r a t e s  the  b e h a v i o r  of  an(t) in an i n c o m p r e s s i b l e  l iquid  
f o r w  =10co0, Pm = 1 0 0  a tm,  and T = # = 0 .  C u r v e s  1, 2, and 3 c o r r e s p o n d  to n = 2 ,  3, and 4. Here  the  
a m p l i t u d e s  of  a l l  the  h a r m o n i c s  i n c r e a s e  in o s c i l l a t i n g  f a sh ion  with the  t i m e .  The  o s c i l l a t i o n s  of  the  r a -  
d ius  R(t) in th i s  c a s e  a r e  m o d u l a t e d  by the  n a t u r a l  f r e q u e n c y  o f t h e  c a v i t y  (F ig .  2, c u r v e  1). The  b e h a v i o r  
and d e t a i l e d  fo rm of  the c u r v e s  fo r  an(t) depend  on the r e l a t i v e  v a l u e s  of  w and w e. I t  is  ev iden t  f r o m  Fig .  
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1 tha t  the p ro f i l e s  of  the h a r m o n i c  ampl i tudes  a cqu i r e  addi t ional  m a x i m a  for  co = 10co 0. They  a re  absent  in 
the r e s o n a n c e  c a s e  (co = coo). This  fac t  is appa ren t  f r o m  Fig .  3, which g ives  c u r v e s  of  an(t) in the  c a s e  of  
an i n c o m p r e s s i b l e  l iquid fo r  P m =  0.5 a tm,  7 = 0, and p = 0.002 c m 2 / s e c .  Cu rves  1 and 2 c o r r e s p o n d  to 
n = 2 and 4. The b e h a v i o r  of  R(t) f o r  these  p a r a m e t e r s  is shown in Fig .  2 (curve  2). 

When the v i s c o s i t y  is ignored ,  the ampl i tudes  an(t) g r o w  m o r e  r ap id ly  with t ime ,  the r a t e  of  g rowth  
i n c r e a s i n g  with the h a r m o n i c  o r d e r .  The  s u r f a c e  tens ion  also has  a s ign i f ican t  effect  on the evolut ion of  
the p e r t u r b a t i o n  h a r m o n i c  ampl i tudes .  F o r  ~- = 75 d y n / c m ,  P m = 0.5 arm,  and p =  0 the o sc i l l a t i on  amp l i -  
tudes  an(t) d e c r e a s e  in the r e s o n a n c e  c a s e ,  and fo r  T = 150 d y n / c m  the ampl i tudes  o f  the f i r s t  s ix  h a r m o n i c s  
d e c r e a s e  with i n c r e a s i n g  t. The f r e q u e n c i e s  of  the h a r m o n i c s  i n c r e a s e  with the o r d e r  n u m b e r  n. The in-  
c lus ion  of  v i scos i ty ,  unlike the e f fec t  e l ic i ted  by s u r f a c e  tens ion ,  does  not cause  the f r equenc i e s  o f  the h a r -  
mon ie s  an(t) to increase. 

With an increase in the pressure Pro, collapse of the bubble takes place in the resonance case. The 

behavior of the radius in this case has been studied in detail [6]. In an incompressible liquid for Io m = 300 

arm, co = coo, and 7 = p = 0 the amplitudes an(t) and frequencies of the harmonics increase as the collapse 

time is approached. The total amplitudes here are greater than in the case Pm = 0.5 arm. For T = 75dyn/ 

crn and p = 0 the qualitative behavior of the spherical harmonic amplitudes remains practically unchanged. 

An analogous situation occurs for ~ = 0 and # = I0 -z cm2/sec. In this case the amplitudes an(t) decrease 

for Pm= 0.5 arm. The inclusion of compressibility slows the growth of all the harmonic amplitudes. This 

effect is observed for �9 = p = 0 and c o = 1.3.105 crn/seco When Pm= 0.5 atm, the compressibility in- 

creases the growth rates of the second and fourth harmonics and slows the growth of the third, fifth, and 

sixth harmonics. 

For co = 0.1co 0 the spherical shape of the cavity is less stable than in the case co = w 0 or co = 10co 0. 

Numerical experiments show that the growth rate of an(t) is more critically dependent on the harmonic 

order in unstable cases. 

We now consider the stability of radial pulsations of a cavity. We write the following expression for 

the perturbed bubble radius ~ (t): 

(t) = R (t) -~ e (t) 

H e r e  a(t) is the p e r t u r b a t i o n  of  the  r a d i a l  mot ion .  A s s u m i n g  l e(t)l << R(t),  subs t i tu t ing  ~(t) into tim 
H e r r i n g - F l y n n e q u a t i o n  (1), and l i n e a r i z i n g  on e(t), we obta in  for  the  p e r t u r b a t i o n  e(t) 

(8) 

( 1 
dt~ T ~ / g '  dt polo dR f ~ t - I - . ~ )  ~o dr~jX 

(9) 
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We analyze the stability of radial  osci l lat ions of the cavity inthe t I e r r i n g - F l y n n  approximation by 

numerical  integration of the system of equations (1}, (9). The values of the pa rame te r s  (R0, P0, etc.) for  
which the behavior of ~:(t) is considered are  indicated above. The amplitude of the sound field is assumed 
to be 0.5 atm for w = w 0 or  w = 0.1c00 and 100 atm for co = 10w0. 

In the resonance case for T = 0 and p = 0.002 cm2/sec the perturbation e(t) decays in the f i rs t  period 
and then, beginning with the third period, grows (Fig. 2, curve 4). When surface tension is taken into ac-  
count, the radial  pulsations of the cavity become stable. When T = 150 dyn/cm,  e(t) decays in the f i rs t  
period of the sound field. Even g rea te r  damping is observed with an increase  in the viscosity.  The com-  
pressibil i ty of the liquid weakly affects the behavior of a(t) inthe t I e r r i n g - F l y n n  approximation. Inc reas -  
ing the amplitude of the external  sound field sharpens the instability of the radial  pulsations. The inclu- 
sion of surface tension and viscosity in this case slows the growth of e(t). If the cavity is close to collapse,  
c(t) always increases .  

In the case co = 10w 0 for r = /~ = 0 the perturbation ~:(t) increases  with t ime (Fig. 2, curve 3). If z ~ 0 
and p ~ 0, the radial  motion of the cavity becomes more  stable. I lere,  on the whole, the growth of e(t) is 
fas ter  inthe unstable case than for w = co0- 

When co << coo (w -- 0.1co0) , a(t) grows during half of the f i rs t  period. The inclusion of surface tension 
(T 75 dyn/cm) and viscosity (p = 0.01 cm2/sec) does not qualitatively change the behavior of c(t). 

2"he foregoing numerical  analysis of Eqs. (1), (2), and (9) shows that the stability of the radial  pulsa-  
tions and spherical  shape of a cavitation bubble depends to varying degrees  on the frequency and amplitude 
of the external sound field, viscosity,  compressibi l i ty ,  and surface tension of the liquid. The viscosi ty and 
surface tension have a positive effect on the stability, the viscosity effects arc  more  strongly felt at the 
higher harmonics ,  and the oscil lat ions of the la t ter  "cut off" with the introduction of dissipation. The su r -  
face tension, by contras t  with dissipative effects,  renders  the behavior of the lower harmonics  more  stable 
at f irst .  Thus, thc viscosity and surface tension make the spherical  shape of the cavity more  stable, acting 
on different parts  of the perturbation spectrum.  The surface tension increases  the oscil lat ion frequency of 
the amplitudes of all the harmonics .  ] 'he viscosity does not affect the oscil lation frequency of the harmonics .  

The amplitude of the sound field more  strongly affects the stability h)r w = w 0 and co<< w0. Increasing 
the field amplitude in these cases  resul ts  in collapse of the cavity. The inclusion of viscosity and surface 
tension does not remove the instability of the spherical  shape of the cavity in this situation. 

The radial  pulsations and spherical  shape of the bubble are the least  stable for co << w 0. The influence 
of the viscosi ty and surface tension is weak in this case.  

Allowance for the compressibi l i ty  of the liquid in the H e r r i n g - F l y n n  approximation does not induce 
significant changes in the behavior of the spherical  harmonic amplitudes and radial  pulsations of a cavi ta-  
tion bubble. The compressibi l i ty  somewhat increases  the instability of the spherical  shape and radial  pul- 
sations except in the event of collapse of the cavity, in which case the compressibi l i ty  dec reases  the growth 
rate of the spherical  harmonic amplitudes near the instant of collapse. 
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